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SUMMARY 

The aim of this work is to study the propagation of a curved premixed flame in an infinite two-dimensional 
tube. The numerical method combines some features of the finite-element and of the finite-difference methods, 
and uses a moving adaptive grid procedure in order to reduce the computational costs. 
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INTRODUCTION 

This paper is devoted to the numerical solution of the classical thermal diffusional model 
describing the propagation of a wrinkled flame front in a gaseous mixture. This non-linear reaction 
diffusion model is a simplified system of governing equations, but its numerical investigation 
presents many interesting features for numerical analysts. 

In particular, in most gaseous combustion phenomena, the chemical reaction rates exhibit a very 
strong non-linear dependence with respect to the temperature. Because of this dependence, 
disparate time and space scales appear in the physical phenomenon, and the resulting partial 
differential equations are stiff. To be more specific, a flame propagation phenomenon presents a 
very narrow zone of sharp gradients, the flame front, dividing two regions in which the variables are 
almost constant. Moreover, the reaction rates (which determine the flame speed and the overall 
burning rate of the mixture) appear to be non-negligible only in a thin layer within the flame front. 
For these reasons, an adaptive grid is required for a proper simulation of the flame propagation, in 
order to solve accurately the small length scales while avoiding the use of a dense mesh in the 
regions of no particular interest. 

Thus we will be led to solve reactive-diffusive partial differential equations in a rectangle using a 
highly non-uniform two-dimensional grid. This will be done with a spatial approximation scheme 
which combines some features of the classical finite-element and finite-difference methodologies, 
because of the robustness of the former for the approximation of diffusive terms on irregular 
meshes, and of the simplicity of the latter for problems posed in a geometrically simple domain. 

The paper is organized as follows: we first state the mixed initial-boundary value problem under 
consideration; we next present in detail the discrete scheme and the adaptive mesh strategy used for 
its numerical solution; we finally illustrate the ability of the method to compute wrinkled flame 
fronts by showing some numerical results corresponding to two different physical situations. 

*Based on a contributed paper 
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FORMULATION OF THE PROBLEM 

The thermo-diffusive model 

The analysis of the unsteady propagation of a wrinkled flame front in a gaseous mixture is a 
strongly non-linear problem involving the classical complexity of non-reacting gas flows coupled 
with the effects of thermal conduction and molecular diffusion and with a (possibly complex) 
mechanism of chemical reactions. The description of this phenomenon with a numerically or 
analytically tractable system of governing equations often uses some simplifications, such as the 
isobaric approximation, which consists of neglecting the effects of the mixture compressibility and 
therefore eliminates the acoustic waves, or the constant-density approximation, which uncouples 
the flame propagation itself from the gas flow, but retains many essential features of the 
phenomenon, including the cellular instabilities of the flame.'-3 The constant-density approxi- 
mation therefore seems physically relevant for qualitatively describing combustion phenomena 
in which the gas motion is almost uniform and plays a secondary role compared with the reactive 
and diffusive effects. In this constant-density model, which is also known as the thermo-diffusive 
model, the flame propagation is simply described by a non-linear system of reaction-diffusion 
equations (equations (1) below). 

We will consider in this paper the propagation of a wrinkled flame in a rectangular channel, 
represented by the semi-infinite domain ((x, y), - A 6 y d R}. Assuming for simplicity that 
a single one-step chemical reaction A-+B 'takes place in the gaseous mixture and using the 
constant-density approximation, we use the following system of governing equations: 

(1) 
1 

Le T, = AT + R(Y, T),  Y, = -AY - Q(Y, T). 

These equations are written using normalized variables: T is the reduced temperature of the 
mixture, Yis the mass fraction of the reactant A and R is the normalized reaction rate, given by 

2Le 

where p > 0 denotes the reduced activation energy of the chemical reaction, Le > 0 is the Lewis 
number of the reactant and cr~(0 , l )  is a non-dimensional heat release parameter (see 
References 4 and 5 for more details about the non-dimensionalization of these equations). The 
initial and boundary conditions associated with equations (1) are 

T(t = 0) f To, Y(t = 0) Yo, (2) 

T=O, Y = l  f o r x = - c o ,  (34  

T = l ,  Y = O  f o r x = + c o ,  (3b) 
a T  ay  
aY a Y  
- = O ,  - = 0  f o r y = f R  

when the flame is propagating in a channel with adiabatic walls. (In the case of a non-adiabatic 
propagation, the conditions (3b) at the hot boundary and the conditions (3c) at the tube walls are 
modified; see the Numerical results section.) 

Problem in a bounded domain 

The numerical investigation of the above problem (1)-(3) of course requires the formulation 
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Figure 1. The computational domain D 

of an analogous problem posed in a bounded domain. We now state this approximate problem 
to be solved numerically. 

Seeking only solutions symmetric with respect to the channel axis y=O,  we restrict the 
numerical study to the upper half of the tube. The computational domain is therefore a rectangular 
portion D = [a ,b]  x [O, R ]  of the infinite tube, as shown in Figure 1. 

The problem to be solved on the computational domain D consists of the equations (1) with 
the initial data (2) and the following boundary conditions: 

aT ay 
a n  a n  
-=O, - = 0  on W, 

(4b) 

T=O, Y = l  on r,, (44 

T = l ,  Y = O  on rb. ( 4 4  

aT a Y  
a n  a n  - = 0, - = 0 on V (symmetry condition), 

Remark 1. If the boundaries r, and r b  are far enough from the flame front, which is required 
for an accurate computation, the Dirichlet conditions (4c)-(4d) on these boundaries may be 
replaced by homogeneous Neumann conditions a T / a x = a Y / a x = O  on Tu and rb. Such a 
modification of the boundary conditions scarcely influences the solution in the case of a stable 
adiabatic flame propagation, but is necessary for a non-adiabatic problem (see the Numerical 
results section). 

NUMERICAL APPROXIMATION 

Spatial approximation 

As pointed out in the Introduction, the numerical solution of the problem (1)-(4) will be 
sought using an adaptive mesh. Our discrete approximation therefore needs to be robust and 
usable even on highly non-uniform grids. This will be attained by combining some features of 
the classical finite-difference and finite-element approximations. 

To be more specific, let @h be a finite-element triangulation of the computational domain D 
(in the usual sense; see Reference 6).  We introduce classical P1 Lagrange triangular finite elements 
with the discretization spaces 

v h =  (U€Co(D),v TE@h,VITEP1}, 

V ~ = ( U E l / , , ~ = o  on ruur,). 
Let C be the set of vertices of the triangulation 0, and C, = CnT,, C, = C n  rb. We define 
the sets of indices I ,  I , ,  I ,  and 1' by setting C =  {Ni, i ~ l } ,  C,= {Ni, i E I , } ,  
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x,, = { N i ,  iEzb},  lo = I - (zuuz,,). Finally, let (qi)isI be the classical basis of the finite- 
dimensional space Vh( is a basis of VE). A straightforward finite-element approximation 
of the problem (1)-(4) leads to the following (spatially discretized) problem: 

Unfortunately, the mass matrix [ M i j ]  = [ J ,  q jq i ]  which appears in the left-hand side of the 
above equations is not diagonal (which prevents us from using an explicit time integration 
method) and does not satisfy the maximum principle (i.e. the inequality M ;  2 0 does not hold 
for all i andj). In order to avoid these difficulties, we employ instead of (5) the mass lumped 
approximation of (5),  

which can also be written as 

J D  " 

This semi-discrete formulation can therefore be considered as a finite-difference approximation 
of the governing equation (1): this is exactly true for the time derivative and reactive terms, and 

J 
D 

can simply be regarded as a particular finite-difference formula for approximating the Laplacian 
operator. (If the triangulation @h is obtained from a uniform orthogonal grid, this formula 
reduces to the usual five-point approximation of AT; but it can be hoped to be consistent and 
robust even on non-uniform me she^.^) We refer the reader to Reference 8 for a numerical analysis 
of the scheme (6) in a finite-difference context. 
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Time integration 

The system of ordinary differential equations (6) is integrated explicitly. Instead of the simple 
forward Euler scheme, we usually employ a high-order time integration scheme (such as 
fourth-order Runge-Kutta), because of the stability properties of this scheme for both diffusive 
and convective terms (the need for dealing with convective terms comes from the moving mesh 
strategy presented in the next section). 

ADAPTIVE MESH STRATEGY 

Since the phenomena under study exhibit narrow zones of large gradients (the flame front) 
separating two regions where all the variables are almost constant (the fresh mixture and the burnt 
gases), a low-cost numerical description of the propagation requires an adaptive mesh. Moreover, 
the thin region of high gradients continually moves towards the cold boundary T,,. Our mesh 
adaptation method therefore consists of two different procedures: 

the ‘dynamic rezone’, which is performed at every time step and allows the node locations to 
vary smoothly with time 
the ‘static rezone’, which is performed only at a few time levels during the calculation in 
order to redistribute the mesh points better and to adapt still better the grid to the solution. 

(1) 

(2) 

Dynamic rezone 

The objective of this operation is to determine at each time step the nodal velocities. This is done 
by simply extending to the two-dimensional case the dynamic rezone procedure used in 
References 9 and 10 for the propagation of planar flames. 

In order to follow the flame front during its motion towards the fresh mixture, we move all the 
mesh points towards the cold boundary Tu with the same velocity V(t )  = [V(t),O] at each time t .  
Therefore, between two static adaptations, everything happens as if the flame propagation were 
observed in a non-Galilean reference frame moving with the velocity V(t ) .  With such a procedure, 
the computational domain changes during the computation, but this is not a drawback since 
the problem.(1)-(3) is posed on a semi-infinite domain. In the reference frame moving with the 
velocity V(t), the grid and the computational domain D are fixed and the equations (1) become 

T , = A T + R ( Y , T ) +  V(t)Tx, (74  

(7b) 
1 

Le 
Y, = - A Y - R( Y ,  7’) + V( t )  Y,. 

At each time t ,  the velocity V(t) is chosen in such a way that the integral of each of the variables T 
and Y in the computational domain D remains constant, i.e. J D  T, = J D  Y, = 0. Integrating (7a) 
and using the boundary conditions (4), we then get 

j r b T x - J r u T x +  { D f i ( Y , T ) + R V ( t ) = O .  

If the boundaries r,, and rb are far enough from the flame front, the first two terms of this relation 
can be neglected to obtain the following expression for the mesh point velocities: 

V(t)  = - i J R( Y ,  7). 
D 
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From a physical point of view, this is the expression of the instantaneous average flame speed at 
time t. Therefore, this very inexpensive dynamic rezone method is altogether adequate and efficient 
for our flame propagation problem: in the moving reference frame the flame front is deformed, but 
stays at the same place during the computation (see Figure 3). Moreover, the additional convective 
term V(t)T,  in (7) allows the numerical solution of (7) to converge to a steady state instead of 
converging towards a travelling wave solution. 

From a practical point of view, this dynamic rezone algorithm amounts to solving the problem 
(4)-(7) on a fixed grid. The time derivative, diffusive and reactive terms are discretized as in (6); for 
the convective terms, a finite-element formulation can be used (see (10) below), but the particular 
structure of the grid (which we now describe) also makes possible the use of a classical finite- 
difference formula. 

Static rezone 

The aim of the static rezone procedure is to compute a new adapted mesh, at  a fixed time level, the 
current ‘old’ mesh and ‘old’ values of the variables being given. In our numerical study, this 
construction of an adaptive two-dimensional grid in the rectangle D is realized as follows. 

We use a mesh whose data structure is intermediate between a logically rectangular 
two-argument grid [x(i,j), y ($  j ) ]  and a tensor-product grid [x(i) ,  y ( j ) ] :  our mesh is divided 
into ‘horizontal’ straight lines parallel to the boundaries W and I/ and has the structure 
N i , j =  [x(i , j) ,y(j)] (see Figure 6 below). Then it suffices for each line y = y ( j o )  to use a 
one-dimensional static rezone method for redistributing the nodes on this line. This will have 
the effect of concentrating many of the nodes Ni , j ,  in the region where the wrinkled flame front 
crosses the line y = y( jo) .  For each horizontal line y = y ( j o ) ,  we simply use the one-dimensional 
procedure developed in References 9 and 10 for planar flame propagation problems; this 
procedure does not change the total number of nodes. Once this is done, it remains to divide 
each quadrilateral [ N i , j ,  N i + l , j ,  N i + l , j + l ,  N i , j + l ]  into two triangles [ N i , j ,  N i + l , j ,  Ni+l , j+l]  
and 

The new values of the variables at the new nodes are evaluated by interpolating the old 
solution on the old grid: for each straight line y = y ( j ) ,  this is again a one-dimensional procedure. 
We can use either a linear interpolation on each mesh of the old grid or a conservative 
interpolation.’ ’ 

A few remarks should be added here. First, the distribution of the horizontal lines y = y ( j )  is 
not modified during the computation (for the calculations reported below, these lines are equally 
spaced); obviously, their positions or their number could be evaluated using a one-dimensional 
adaptive procedure, although this would complicate the evaluation of the new solution. It should 
also be noticed that there is no coupling between the nodes on the line y = y ( j o )  and on the 
neighbouring lines y = y ( j o  + 1) and y = y ( j o  - 1). 

Let us finally indicate briefly when this static rezone operation is used during the calculation (also 
see Reference 9 for more details on this question). The first static adaptation is performed after the 
initialization, before the first time step. Then, once a new grid has been computed at time to,  
another static rezone is realized only when the solution has been changing sufficiently since the 
last adaptation, i.e. when some norm of U ( t )  - U(to )  is greater than a given quantity (here U 
denotes the vector whose components are the values of the variables at the nodes). It can then 
be noticed that the number of static rezones performed per unit time (or per hundreds of time 
steps) decreases to zero when the numerical solution converges to a steady state. 

N i +  l , j+ ,  , N i , i + l ] ,  which yields the new triangulation. 
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REMARKS ON THE NUMERICAL METHOD 

Stability criterion 

Since an explicit time integration scheme is used for the numerical solution of (4)-(7), the value of 
the time step is to be chosen according to an appropriate stability analysis. Without presenting this 
analysis in detail, we simply sketch in this section the major point in the derivation of a stability 
criterion for the problem under consideration. 

Such a stability analysis is easily carried out when classical finite-difference schemes are used on a 
uniform orthogonal mesh. For example, for a purely diffusive equation u, = Au, the stability 
analysis of the forward Euler scheme yields At <$Ax’ in one space dimension and 
At d $(Ax-’ + A y - ’ ) - ’  on a two-dimensional orthogonal grid. However, compared to this 
simple case, several difficulties arise when investigating our problem (7): firstly because many 
more terms need to be considered and secondly because of the non-uniformity of the mesh. It 
appears in fact from several numerical experiments that a scheme operating with a certain time 
step may be stable on an orthogonal mesh and may become unstable on a non-orthogonal grid 
(the mesh sizes Ax, Ay  being held fixed). Therefore we need to take at least the non-orthogonality 
of the grid into account in our analysis. This can be done by comparing the non-orthogonal 
grid with a reference orthogonal grid: for instance, the regular non-orthogonal mesh A ,  
represented in Figure 2 is the image of the regular orthogonal grid A ,  by the mapping 
F(x,  y )  = (x’, y ’ )  = ( x  + 6y ,  y) ,  where 6 = tany. Then, solving u, = Au = u,.,. + u,,,,,, on the 
grid A ,  amounts to solving u, = u,, + u,,,, - 261.4,~ + 6’u,,,, on A,. The stability criterion of this 
last equation on the orthogonal mesh A ,  can easily be derived and gives At < G(6) with, for 
instance, G(0) =$(Ax-’  + Ay-’ ) - ’  for the forward Euler scheme. This shows that the stability 
restriction for the equation u, = Au on the non-orthogonal grid A ,  is of the form At d G(6), in 
other words that the non-orthogonality of the grid does influence the stability analysis. Since 
we usually have G(6) < G(0) for 6 > 0, we have explained why the time step restriction is more 
severe on non-orthogonal grids. 

We do not give the exact expression of the stability criterion for the equations (7). But taking the 
non-orthogonality of the mesh into account in the stability analysis has been essential to allow 
successful explicit calculations even on adaptive non-orthogonal meshes with very obtuse angles 
(see Figure 6). 

Evaluation of the grid velocity 

As explained in the Dynamic rezone section, the grid point velocity V(t )  is obtained by imposing 

I d /  
A. 

Figure 2. Transformation from an orthogonal to a non-orthogonal grid 
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a conservation property in the whole computational domain D:fD T, = I D  Y, = 0. From a physical 
point of view, these relations mean that the thermal energy and the mass of reactant contained in 
the domain D are kept constant. 

Thus, instead of using the value (8) of the grid velocity, it is interesting to stick to the conservation 
principle used to derive (8) and to try to impose the property J D  T =  constant directly in the discrete 
scheme. Using the notations of the spatial approximation section, we can write the discrete 
expression of J D  T as CjEr Tj sD'pj ;  we are therefore going to evaluate the grid velocity by imposing 
that this quantity remains constant during the calculation, i.e. by requiring 

at all time steps (we use the superscripts n, n + 1 to denote two consecutive 
As explained above, the actual numerical scheme differs slightly from 

additional convective terms; assuming for simplicity that a forward Euler 
the time integration, we can write the discrete temperature equation as 

time levels). 
(6)  because of the 
scheme is used for 

with T; = CisI Tl'p,. Summing these equations for j € I 0  and using (9), we get the following 
expression for the mesh velocity Vn = V(t"): 

- C !2;j ' p i +  j D  VTiVCD 
i s lo  D I/" = lD (mX@ 

3 

where CD = Cislo 'pi. Integrating the denominator by parts and using the boundary condition 
(4c)-(4d), we obtain finally 

This is the value of the grid velocity which we use in the discrete equations (lo), whereas a 
straightforward discretization of (8) would have led to 

It is interesting to notice that the difference between (1 1) and (12) only consists of boundary terms 
since the function CD is constant (and equal to 1) everywhere except in the neighbourhood of the 
boundaries Tu and rb (this amounts to saying that the finite-element approximation of the diffusive 
and convective terms is conservative). In particular, the second term in the numerator of (1 1) 
corresponds exactly to the terms Jr, T, and Jru T, which we have neglected in the derivation of (8). 

The major reason for using (1 1) instead of (12) is the following: as already mentioned, one effect of 
our dynamic rezone method is to allow the solution to converge to a steady state. The expression 
(1 l), which guarantees the conservation property (9) up to round-off errors, will lead to a much 
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better convergence to steady state: for the first numerical example presented below, the use of (1 1) 
allows us to obtain residuals (i.e. max I TY" - TTl + max I Y;+l - Yll) less than 10-l2, while 

residuals of the order of 
l d  1st 

were obtained with the expression (12). 

NUMERICAL RESULTS 

We end this paper by presenting some results corresponding to physical situations where the 
planar flame is stable (we refer the reader to References 3 and 12 for an asymptotic stability 
analysis of the planar flame, and to References 1 and 2 for a numerical investigation of 
two-dimensional flame instabilities). More precisely, the numerical experiments whose results 

Figure 3. Adiabatic flame propagation: isotherms at eight successive time levels 
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are reported in this section have been carried out with the following values of the physical 
parameters: Le = 1, /3 = 10, CI = 0.84. 

Figure 3 shows the adiabatic propagation of an initially wrinkled flame. The isotherms are 
plotted on the whole width of the tube, i.e. in the domain E = [a,  b]  x [ - R, R ]  = { (x, y) ,  (x, y ) d  or 
(x, - y )eD} .  One can observe that the wrinkled flame front converges to a planar steady state 
where all the isotherms are orthogonal to the tube walls, as expected from a physical point of view. 

Figures 4 and 5 correspond to a different physical situation: the initially planar flame now tends 

r- 

Figure 4. Non-adiabatic flame propagation: isotherms at ten successive time levels 
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Figure 5. Non-adiabatic flame propagation: steady-state mass fraction contours 

Figure 6. Blow-up of the triangulation near the flame front 

to draw back towards the hot boundary (on the right) because a flow of fresh mixture is introduced 
at the left end of the channel, and a part B of the wall W is kept heated at the temperature T ,  = 1. 
This non-adiabatic propagation is described by a slightly different set of equations: 

T, = A T +  Q ( Y ,  T )  + VoT', 

1 
Le 

Y, = - AY - sZ( Y ,  7') + Vo Y,, 

where the velocity V, is now given and corresponds to a uniform gas flow in the tube (V, is to 
be chosen large enough so that the flame tends to propagate towards the right end of the tube). 
The boundary conditions (4) become 
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T = l  on B, 

for the temperature, and remain unchanged for the mass fraction. Notice that, in agreement 
with Remark 1, an homogeneous Neumann condition is to be used on rb because the temperature 
of the hot gases is now unknown. The adaptive mesh strategy now simply consists of the static 
rezone procedure described earlier. 

As observed on the figures, the heat source B behaves as a flame holder: the fresh mixture 
cannot cross this hot region without burning, and the flame front eventually converges to a 
wrinkled steady state shown in the last view of Figure 4 and in Figure 5. The finite-element 
triangulation of the computational domain D corresponding to this steady state is shown in 
Figure 6. 
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